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A FINITE ELEMENT METHOD FOR LOCALIZED FAILURE ANALYSIS

Michael ORTIZ, Yves LEROY and Alan NEEDLEMAN

Division of Engineering, Brown University

Providence, Rhode Island 02912, USA .

A method is proposed which aims at enhancing the performance of gen-
eral classes of elements in problems involving strain localization. The method

exploits information concerning the process of localization which is readily
available at the element level. A bifurcation analysis is used to determine the

geometry of the localized deformation modes. When the onset of localization is

detected, suitably defined shape functions are added to the element interpola-
tion which closely reproduce the localized modes. The extra degrees of freedom

representing the amplitudes of these modes are eliminated by static conden-

sation. The proposed methodology can be applied to 2D and 3D problems

involving arbitrary rate-in dependent material behavior. Numerical examples
demonstrate the ability of the method to resolve the geometry of localized

failure modes to the highest resolution allowed by the mesh.
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I.

A FINITE ELEMENT METHOD FOR LOCALIZED FAILURE ANALYSIS

1. Introduction

A phenomenon that frequently accompanies inelastic deformation is the formation of lo-"

calized bands of intense straining. This phenomenon of localization occurs in a wide variety of

solids; in ductile single crystals, Chang and Asaro [1], in structural metals, Costin et al. [2;,

Cox and Low t3', in saturated clays, Vardoulakis [4,5], in rocks, Waversik and Brace (61 and

in concrete, van Mier 17]. The physical mechanisms responsible for triggering localization vary

widely. For example, at high rates of loading in structural metals, thermal softening plays a

key role in initiating localization [21. Localization also occurs in metals at low rates of load-

ing. where thermal effects are negligible. [1,31. Once localization takes place. large strains can

accumulate inside the band and lead to fracture.

It is important to note that a concentration of deformation into a more or less well defined

band does not necessarily constitute localization in the sense used here. We use the term

localization to refer to situations in which the concentration of deformation into a band emerges

as an outcome of the constitutive behavior of the material. Accordingly, the orientation of the

band is characteristic of the material, rather than a consequece of boundary conditions. We will

refer to such a band of localized deformation as a shear band, although in general dilatation as

well as shear takes place within the band.

Since large strains accumulate inside a shear band without substantially affecting the strains

in the surrounding material, e. g. Hutchinson and Tvergaard 81 and Saje et al. [9, shear

bands can only be accurately described by a conventional displacement finite element method

if the band interfaces follow element boundaries. Furthermore, the mesh sets the minimum

band thickness at one element width. Thus, in order to accurately resolve a narrow shear

band, small elements are required. with element boundaries that follow band directions. Finite

element analyses of shear bands based on fine meshes of quadrilateral elements built up from four

constant strain triangles have given sharply localized deformation modes, see e. g. Tvergaard

et al. 10', Tvergaard !11' and the review of Needleman and Tvergaard 112. A material

instability analysis. Hadamard 13, Hill l-. Mandel [15,. Thomas 16. Rice '17. is used to

orient the quadrilaterals. Localization is found in numerical calculations even when the mesh
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in not optimally designed, as discussed in [101, but with a certain delay and with some mesh

induced shear band broadening.

In a two dimensional rectangular mesh, quadrilaterals built up of four crossed triangles can

resolve narrow bands of deformation in four directions; parallel with the sides of the quadrilat-

eral and with the element diagonals. By way of contrast, isoparametric quadrilaterals can only

resolve such narrow bands parallel with the element sides. Finite element analyses of oblique

localized deformation bands using isoparametric quadrilateral elements, e. g. Prevost and

Hughes [18[, Prevost [191, Willam et al. [201, do exhibit the tendency for shear bands to form

when appropriate critical conditions are reached but have not exhibited the sharp localization

obtained using crossed triangles.

However, the crossed triangle finite element formulation is specifically geared to two di-

mensional problems and it does require careful mesh design to account for likely directions of

localization. In this paper a method is proposed which aims at enhancing the performance

of isoparametric elements in problems involving strain localization. The formulation here i-'

restricted to small displacement gradient theory and to rate independent constitutive relations.

The method uses a material instability bifurcation analysis [13-17' , carried out at the element

level, to determine the geometry of the ensuing localized deformation modes. When the onset

of localization is detected, the element interpolation is extended by adding to it suitably de-

fined shape functions that reproduce the localized deformation modes. These additional shape

functions render the element incompatible, but we show that the element satisfies the patch

test, Irons [21', Taylor et al. [221. The extra degrees of freedom representing the amplitudes

of the localized modes are eliminated by static condensation. It should be emphasized that

all these operations can be implemented at the element level. The proposed methodology can

be applied to two and three dimensional problems and does not require a mesh design to take

explicit account of likely directions of localization. Pietruszcak and Mroz :23 previously incor-

porated a shear hand mode of deformation into a finite element formulation. However, in their

approach. the localized shear band is specified by the consitutive relation as the sole mode of

inela.,tic deformation and the element strain rates are directly given in terms of conventional

shape functions.
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Numerical results are presented in Section 4 for localization in both nearly incompressible f

solids and in compressible solids. Even in the absence of shear bands, isoparametric elements

are of limited value for nealy incompressible solids, such as the classical plastic solid. Mesh
locking occurs as a result of the near incompressibility in the fully plastic range, Nagtegaal et al. ,"

[24]. This difficulty can be overcome through the use of a method to handle internal constrains;

for example, here we use a B technique, Hughes [25]. It bears emphasis, however, that to resolve

localized deformation patterns in a nearly incompressible solid it is necessary, but not sufficient,

to prevent mesh locking. Our numerical results show that the enhanced element introduced

here does resolve localization more sharply than the underlying B-isoparametric element. Also,

for compressible solids, where mesh locking due to incompressibility is not an issue, numerical

results are presented that illustrate the improved performance of the enhanced element.

2. Localization of as a Bifurcation Phenomenon

In this section we review some aspects of the general theory of localization of inelastic

deformations. Some of the basic principles underlying the theory follow from Hadamard's

studies of elastic stability [131, extended to the inelastic context by Thomas [16', Hill [14],

Mandel [15 and Rice [17'. Here, for simplicity attention is confined to infinitesimal deformations

and thermally decoupled, rate-independent material behavior.

Consider a homogeneous, homogeneously deformed solid subjected to quasi-static incre-

ments of deformation i. We wish to determine if a bifurcation can occur in such a manner that

subsequent deformations become discontinuous across a plane of orientation n. Let u be the

displacement field in the solid. Whereas u itself remains continuous after the onset of local-

ization, the displacement gradients Vu will exhibit a jump across the plane of discontinuity, i.

e.,

where the superindex '-' refers to the plus side of the plane of discontinuity and to the

minus side. Maxwell's compatibility conditions necessitate that the jump (1) be of the form

1 9, i , (2)
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for some vector g. Let us further define m to be the unit vector along g, i. e.,

g,/g, g=1 g[ (3)

The pair of unit vectors m and n entirely define the nature of the discontinuity. The corre-

sponding strain jump is given by

if]= (g, n, +gn)/2 (4)

Often, two parallel planes of discontinuity pair up to form a band of instensely deformed

material. Two limiting cases are noteworthy:

(a) m orthogonal to n. The material in the band deforms in simple shear, i. e, a shear band

develops.

(b) m parallel to n. The band undergoes extension normal to the planes of discontinuity. In

certain circumstances this can be interpreted as a splitting failure mode.

Shear bands are characteristic of materials exhibiting isochoric plasticity. Or, the other hand,

splitting failure modes can be thought of as idealizations of the separation processes which occur

during progressive brittle failure. In between these two extremes lies a continuous spectrum of

mixed failure modes for which m and n are neither orthogonal nor parallel. Plastic-fracturing

materials such as concrete, rocks and ceramics are capable of failing in mixed modes, with the

angle between m and n lying anywhere from 0' to 9Of [17,26.27 i .

We next investigate under what conditions localized failure modes are possible. To this

end, let us assume that the solid is at the onset of localization. At this point, the stresses o

and strains c are continuous throughout the body. However, the stress and strain rates a and

i will exhibit discontinuities across a plane whose orientation is to be determined. Assuming

rate-independent material behavior the incremental stress-strain relations take the form

,= D,klii (5)

where D is the tangent stiffness tensor for the material. Rate independence implies that D is

homogeneous of degree zero in i. We restrict attention to cases where D is piecewise independent

5
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of c. For example, in classical plasticity D has two branches, one corresponding to plastic

loading, the other to elastic unloading.

For elastic-plastic solids, the localization bifurcation analysis is carried out using the same

branch of the moduli D across the incipient planes of discontinuity, which corresponds to inves-

tigating bifurcation for a linear comparison solid, Hill 133j, Raniecki and Bruhns [341. Hence,

taking jumps in (5) leads to

=C1 Dlifkl M1 (6)

Equilibrium across the discontinuity planes requires that the tractions t be continuous, i.e.,

[I = [ , , n6, 0 (7)

Combining (6) and (7). it follows that

1, D,,ki [ikl 0 (8)

Finally, using the kinematic relation (4) and the definition (3) we obtain

A, k(n) mk (N D., )IN mk 0 (9)

This condition has to be satisfied by m and n for the localized mode to be possible. The onset

of localization occurs at the first point in the deformation history for which a nontrivial solution

of (9) exists. For localization to occur along the direction n, the localization matrix A(n) has

to have at least one zero eigenvalue. This in turn necessitates

f (n) det(A(n)) 0 (10)

If a unit vector n satisfying (10) can be found, the corresponding vector m which completes the

definition of the localized mode follows from (9).

A numerical procedure for computing m and n from the above equations is given in Ap-

pendix I. In two dimensions, the localization angles can be computed directly as the roots of a

cubic polynomial, while in three dimensions the localization directions are computed iteratively.

. .. , ]
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An example of application of the solution procedure to complex three-dimensional constitutive

equations is found in 127].

3. An Assumed Strain Finite Element Method for Localized Failure Analysis

It has been long recognized [10[, that isoparametric elements face inherent limitations in

the presence of localized deformations. The essence of the problem can be illustrated by means

of Fig. 1, which shows a shear band traversing a regular mesh at 45. The elements on the

boundary of the shear band should exhibit a strain discontinuity. However, such a deformation

pattern is not well represented within the isoparametric interpolation. On the contrary, the

element tries to conform to the deformation field by averaging the deformation on both sides of

the discontinuity. As a result, the true discontinuous behavior may be smeared out over several

elements or in some cases precluded altogether.

A numerical procedure which circumvents these difficulties is proposed next. For simplicity,

attention is confined to infinitesimal deformations. The method can be described as follows:

(i) For every element in the mesh a localization analysis of the type described in Section 2 is

carried out at the reduced quadrature points, where the stresses and other state variables are

computed most accurately [35]. For instance, in 4-node and 9-node isoparametric elements

localization is investigated at the centroid and the 2x 2 Gauss points, respectively. This

analysis is repeated at every step of the solution process until the onset of localization is

detected at one or more reduced quadrature points.

(ii) From this point on, suitable deformation modes which exactly reproduce the discontinous

deformation patterns are added to the element or elements where localization is detected.

The extra degrees of freedom are eliminated at the element level by means of static con-

densation.

This approach takes advantage of the fact that considerable information concerning the local-

ization process can be readily obtained at the element level. The method aims at utilizing this

information to enhance the performance of the element in the presence of localized failure.

3.1 Localized deformation modes

We envision a generic element in which the displacement field is interpolated as

7
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t4 (x) N. (x)(1)

where u, are the nodal displacements, N,, (x) are the interpolation functions and the sum

extends to all N nodes in the element. A typical example is given by the serendipity family of 4 A

to 9 node isoparametric elements. Let us further denote by {,, r= 1, . . ., NQ} the coordinates

of the reduced quadrature points. Here the subindex r ranges over all NQ reduced quadrature

points in the element.

Based on the state variables computed at the points C, a localization analysis of the type

described in Section 2 can be carried throughout the solution process. Let us assume that in

the generic element under consideration and at some stage of the solution several bifurcations

have been detected resulting in NL localized modes. The geometry of these deformation modes

is fully determined by pairs of unit vectors {(mn,, , , ,. 1. NL} representing the dis-

placement direction and the normal to the surface of discontinuity, respectively. Furthermore.

let F_ denote the reduced quadrature point at which the ath localized mode has been detected.

Localized deformation modes exhibit a strain discontinuity along the surface of normal A,

passing through C,,. In order to accommodate these deformation modes we extend the element

interpolation by means of suitably defined shape functions which closely reproduce the localized

deformation patterns. To this end. for each localized mode we define the functions

(X) , f N"i, (X (- C )I, if A. • (X - E, )> 0::.::

M, (x)~ O, otherwise. (12)

and

,,,,.11 , (X - if A / , (X ( - 0,)_< o . .
M. (x) - 0, otherwise. (13)

where no sum is implied on the index a. These functions exhibit a jump across the surface of

discontinuity

Consequently, any convex combination

8
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M.,, (x) = (1- A,, )M- (x) + ,, A (x) (15)

of M, and M,, exhibits the same jump (14). Thus, (15) defines a one-parameter family of

* possible shape functions for the localized modes. Adding these shape functions to the element

interpolation, the local displacement field becomes

N NL

t, (x) = N ,,N, (x) + ,, M.,, (x) (16)

where {-, a : 1,..., NL} are the amplitudes of the localized modes. It should be noted

that shape functions (15) are incompatible. i. e., in general do not satisfy the C' continuity

requirement across the element boundary and the element becomes nonconforming.

The element strain field is computed from (16) to be

N NL

* ~C,~ (x) (u 1 (x) -u,., (x)) /~2 (t4,, X, (x) -u, . (x)) N j , (l, ' x (A7 ,),()

(17)

For subsequent derivations it proves convenient to recast this expression in matrix form. Let u,

denote the nodal displacement array and u. the collection of amplitudes -1,, of the additional

incompatible modes. Then (17) can be expressed in the more compact form

C (x) Bu, + B, ik (18)

It follows from (12) and (15) that the compatibility matrix B2 takes the form

A,, (to n,,, rb, ,, )'2, if U, • X ( - E,) > 0:(1 )..
(B ),X,,, )(m,,, n, - n , ,, ).'2, if • (x- , < 0.

so that the element strain field exhibits a jump

-.42

PC, (x)Y - , (M,, ,,, 4,,, ,, )/2 (20)

across the oth surface of discontinuity. Thus, the parameters 7, represent the magnitude of

the strain discontinuity associated with the ath localized mode.
". - :-:-9
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It is implied in (18) that in the absence of localized modes the element strain field takes

the form c(x) = B, (x)u, where Bl results from applying the strain-displacemen t relations to

the conforming interpolation (11). It was noted in "24, that in applications involving isochoric

perfect plasticity this formulation results in an overly stiff response due to the poor handling by

the element of the near-incompressibily which accompanies extensive plastic flow. A number

of techniques have been proposed to alleviate the locking phenomena associated with internal

constraints such as incompressibility. In this work we adopt Hughes' B3-method 125' which for

the 4-node quadrilateral consists of replacing the compatibility matrix B, by a modified B1 of

the form

B, (x) R,"[ ' (x) B- ''  (x) - (I - )B ' (X ,) (21)

Here. Bit' and B,- are defined so as to give the deviatoric and volumetric parts of the strain I
tensor when multiplied by ii, x, is the centroid of the element and c is a small stabilization

parameter which is included to suppress spurious pressure modes [28'. For the 9-node element.

B'" is computed at the reduced quadrature points and extrapolated to the rest of the element

by means of suitable shape functions. Hughes' B-method is closely related to selective reduced

integration techniques and to mixed methods, see e. g. the review of Hughes et al. 29.

Substituting B, in (18) by the modified compatibility matrix B1 the element strain field m
finally takes the form

c(x) B, , - u u (22)

Let us define the stiffness submatrices

K, J ~f[D3, d v

K1 : KT = B[DB d V (23) P

S BT DB.d V

where Q2 signifies the domain of the element and D are the tangent stiffness tensor of the

material. Since the localized modes represent internal degrees of freedom of the element, the

corresponding amplitudes u. can be eliminated by static condensation "30 to obtain

10
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R .,

R_ =(24)

and the effective element stiffness becomes

K = Ki K12 KL_ & 1  (25)

It should be emphasized that all the matrix operations indicated in (25) can be carried out at

the element level.

As can be seen from (25), in the present method the stiffness matrix K11 of the underlying

conforming element is modified by means of a term which represents the net effect of the added

localized modes. In Section 4 it is shown by way of numerical examples that the enhanced

element is more conducive to localization and provides sharper results than those obtained

from the B-method alone.

3.2 Patch test

In Section 3.1 it was noted that the introduction of localized deformation modes renders the

element nonconforming. To insure that the convergence properties of the underlying conforming

element are not altered, the incompatible modes have to be defined in such a way that the patch

test is satisfied. This test determines whether or not the element consistently reproduces states

of constant strain. If so, convergence takes place within each element, e. g. Strang and Fix

[2811.

The definition of shape functions (15) contains a set of free, as yet undetermined parameters

A,, . Next, it is shown that the value of these parameters can be uniquely determined from the

requirement that the element satisfy the patch test. Taylor et a]. [22) derived a necessary

condition for the patch test to be passed by a nonconforming element. With the present

notation such condition reads

-n B,d = 0 (26)

In view of (19), (26) necessitates

[-(1 - A,, )A:- + A,, A" )(m,,, n, mn,,, n,,, )/2 = 0 (27)

11a
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where A,'+ and A,,- are the areas of the element subdomains lying on the plus and the minus

sides of the ckth surface of discontinuity, respectively. Condition (27) is satisfied by setting
1.'

-(1 - A,, )A,, - A A"+ =0 (28)

which yields

A. A (29)

where A' A, + + A- is the total area of the element. In practice, satisfactory results are

obtained by computing the areas A and A, - by numerical integration.

3.3 Formulation as an assumed strain method

A broad class of finite element schemes commonly referred to as 3-methods consist of

postulating a relation c = Bu for some suitably defined operator B and a tangent stiffness

matrix of the form

K=j 13TD 3dV (0]j~f DT Wd 1(30)

This class of methods originated with the pioneering paper of Hughes [251 and have been par-

ticularly successful in overcoming mesh locking difficulties associated with internal constraints.

The formulation proposed here can be rephrased as a B-method by noting that (25) can be

alternatively expressed as

1 (B - K(f% 11 K- B, )r D(Il, - K.2 KB )dV (31)

Comparison of (30) and (31) warrants the identification

B_ B, - K1Z,:T B, (32)

Thus, the proposed formulation can be regarded as a B-method in which the the compatibility

operator is postulated to take the form (32).

The expression (31) for the effective stiffness matrix can be directly obtained from the

IHellinger-Reissner variational principle. This principle characterizes the equilibrium and com-

patibility equations as the Euler equations of the potential

12
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:~ 0[1 % . i
L(ii,i) - -2Di.kij (u,., + iU..,) - 2D,,k- ii i4 dV - dS (33)

where 07 is the domain occupied by the body, 1 R is the traction boundary and f and t denote the

body forces and applied tractions, respectively. Guided by the results obtained from the static

condensation procedure we postulate the following two-field interpolation for displacements and

strains

N i-

t4(x) t 4,,N,(x) (4
a= (34

i(x) = Bu = (f - K 2 K: 2 1. )ill

where, as before, u denotes the collection of nodal displacements u,, and A. are the conformal-

shape functions. Substituting the interpolated fields (34) into the Hellinger-Reissner potential

the discretized Euler equations are found to be

(35)
[j T3rD( -DB )dV] U, 0

where the element forces are given by

(f),= f , d, V +L t , dS (36)

It is interesting to note that only the conformal shape functions are involved in the computation

of the element forces. It follows from (35a) that the element stiffness matrix takes the form

K f BT DBd 1 (37)

On the other hand, satisfaction of eq. (35b) for arbitrary incremental displacements necessitates

f fTD(B, - B3)dV = 0 (38)

If this condition is identically satisfied the stiffness matrix (37) can be alternatively expressed

in B-form

13
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K= T D fdV (39)

A simple computation reveals that for the present choice of 3-matrix (35b) condition (38) is in-

deed identically satisfied. Hence the method can be directly derived from the Hellinger-Reissner

variational principle. The conditions under which a B-method is variationally consistent were

first elucidated in [311 where orthogonalit y conditions (38) were derived within the more general

context of the Hu-Washizu principle.

Satisfaction of orthogonality conditions (38) not only places the method on a solid varia-

tional foundation but also has a consequence of some practical importance. Eq. (35a) indicates

that the internal forces evolve at a rate

f~I Z _ BDfdI i (40)

Integrating in time we obtain the expression

fifl Bio'd)' (41)

Thus, the internal forces can be computed by using the conformal compatibility matrix B,

regardless of whether localized deformation modes have been added to the interpolation. On

one hand, this has the effect of eliminating the overhead involved in computing the enhanced

&l-matrix during the computation of the internal forces. Secondly. eq. (41) guarantees that

as long as the stress history is continuous in time the internal forces will also be a continuous

function of time. In particular, no sudden jumps will be experienced by the internal forces on

adding a localized mode to the interpolation.

4. Numerical Examples

Considerable insight into the performance of the method can be obtained by examining

the behavior of a single element. A first simple example of this nature is shown in Fig. 2.

The problem concerns one element in which three nodes are constrained in both directions

while displacements are prescribed on the fourth node which result in nonuniform shear across

the element. The computed force-displacement diagrams corresponding to an isoparametric

element, Hughes* B-method and the present approach are shown in Fig. 2. It is seen that the

14
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isoparametric element exhibits considerable residual stiffness once the element is fully plastified.

By contrast, both the R method and the enhanced element predict limit loads of similar values.

Once these limit loads are attained no residual stiffness is observed and a failure mechanism is

formed. However, the nature of the failure mechanisms predicted by both methods is signifi-

cantly different. Fig. 4 shows the computed strain histories at all quadrature points. It is seen

that those obtained from the B-method show essentially proportional growth and no tendency

towards localization. By contrast, in the enhanced element a bifurcation is detected as the

centroid plastifies which results in the localized mode shown in Fig. 3. From this point on, the

strain within the lower half of the element remains constant and all subsequent deformations

are localized to the upper half. Thus, whereas adequate handling of incompressibility suffices

to capture limit loads accurately it appears that to obtain sharp predictions of localized failure

further structure has to be added to the element.

A second example is concerned with shear band formation in a perfectly plastic von Mises

solid with a periodic array of inhomogeneities, Fig. 5. The body is subjected to an overall

uniform shear deformation. The inhomogeneities are modelled by one element voids which act

as nucleation sites from where shear bands emanate. The material parameters used in the

analysis are E = 2x 1C, v = 0.3 anda. = 200, where E, v and or are the Young's modulus,

Poisson's ratio and yield stress, respectively. Fig. 6 shows the deformed mesh corresponding to a

prescribed overall shear deformation " 1.6x 10'. A shear band spanning the inhomogeneities

is clearly apparent. The bifurcated elements and localization directions are shown in Fig. 7.

It is seen that localization is confined to a diagonal band two elements wide. Fig. 8 shows

the distribution of equivalent plastic strain across the center of the shear band computed from

the B-method and the enhanced element at two stages of the solution process. Again it is

seen that the enhanced element results in a sharper shear band with higher amounts of plastic

deformation concentrated over a narrower region than the B-method.

Our next example concerns a plane strain rigid punch problem and aims at assessing the

performance of the method in the presence of curved shear bands. Fig. 9 shows the geometry

of the problem and the final deformed mesh for a prescribed displacement i 0.4. A perfectly

* plastic, von Mises model was assumed with material constants E 30000, P, 0.3 and a. 60.

15

.............................



* ' °

- Fig. 10 shows the contours of maximum shear strains computed from the B-method and the

enhanced element. A well defined shear band is observed in both cases. However, the computed

shear strains are seen to be about 50 higher in the case of the enhanced element. Thus, the

proposed method is seen to improve the performance of the underlying element regardless of

the orientation of the shear band with respect to the mesh.

The examples discussed above show a purely quantitative difference in the response as

computed with or without localized modes. Our final example is concerned with a case in

which the enhanced element accurately captures a failure mode which the underlying element

fails to detect. f ere we consider a rectangular plane strain specimen compressed between two

rigid platens. Fi, II Perfect stick between the specimen and the platens is assumed. The

material model iwed in the. caliulatnoii i - Drucker- Prager's model for soils .32 with a friction

angle of 2( a diLt anc anLli of V' and a coliesion of 5. Perfect plasticity is assumed and

the elastic respoi.e i- iaki. t,, li near and isotrtopic with E 5000 and v = 0.3. This

constitutive relation falL Aitdiin thc franework analyzed by Rudnicki and Rice 126. and a

noteworthy outcrn( of their mjstibhit analvsi- iu that the n massociated character of the

coist itUti'Ve resp orist- ha.- " t ,l f ,prmiotm i,,alhzat ior It should also be emphasized

that the material unidef (on,, ,- r ,. wi t,la.tiial dilktant and mesh locking due to near-

incompressibilit i- of u, (on -r: I 1"2 lepit the load-d isplacement curve computed

frori a regular isoparauret i *,.tt'rit atd thv sainut. eletnent with, localized modes added to

the interpolation - carn Lh- sevi, b,,tf curges art irtuall. identical during the first stages of

loading. However. at some critical deformation the enhanced element exhibits a sudden drop

in the load. This corresponds to a bifurcation into the failure mechanism shown in Fig. 13b.

By contrast. the isoparariietric elenit appears to preclude the development of a failure mode

and the deformation pattern remaini- essentiall unchanged throughout the loading process.

Fig. 13a. The distribution of effective plastic strain shown in Fig 14 further illustrates

this discrepancy. Whereas the isoparametric elenient predicts a smooth distribution of plastic

flow over the specimen. Fig. 14). the enhanced element yields a rather intricate pattern with

localized regions of intense straining, Fig. 14a. Since in this example incompressibilit y is not a

issue, it is clear that the inability of the isoparametric element to produce localized failure modes

16



stems from reasons other than mesh locking. As discussed in Section 3, the smoothness of the

isoparametric interpolation and the tendency of the element to smear out strain discontinuities

are at the basis of the poor performance.

5. Summnary and Conclusions

A method has been presented which aims at enhancing the performance of general classes of

elements in problems involving localized failure. The method exploits the fact that considerable

information concerning the process of localization can be readily obtained at the element level.

A simple analysis suffices to detect the onset of localization in an element and to determine the

geometry of the localized deformation modes. This information is utilized to set up additional

shape functions which closely reproduce the localized deformation patterns. The additional

degrees of freedom are then eliminated at the element ievel by static condensation. Although

the resulting element is nonconforming the patch test is satisfied and the convergence properties

of the underlying conforming element are not altered. The method can be formulated as a B.-

method or derived directly from the Hellinger-Reissner principle. Numerical examples indicate

that whereas limit loads can be accurately computed by means of finite element methods which

adequately handle the incompressibility constraint, to obtain sharp predictions of localized

failure modes using quadrilateral isoparametric elements further structure has to be added

to the interpolation. The present approach provides an efficient means of incorporating this

additional structure into general classes of 2D and 3D elements.

Appendix I. Solution of the Localization Condition

In this appendix we discuss a computational procedure for detecting the onset of localization

and determining the localization directions m and n. It proves convenient to treat the 2D and

2D cases separately.

Three-dimensional case. If the material response is path-dependent, the integration of the

constitutive equations has to be carried out incrementally. If, for instance, the instantaneous

initial response of the material is isotropic-elastic, the localization function (10) initially takes

the value

f(n) (A,. -- 2p,, )p, (A .1)
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where A,, and v,, are the Lame constants of the virgin material. Note that f(n) > 0 and

independent of n. As the process of deformation progresses, f may develop minima which

eventually become negative or zero. This in turn signals the onset of localization. To detect

precisely when this happens, the minima of the localization function f can be computed at

every deformation increment and the localization condition (10) checked at the minima. This

leads to considering the constrained minimization problem

minimize f(n) det(nD , kin)
(A 1.2)

subject to I nj= 1

where D is the current value of the tangent moduli. The minima are characterized by the

condition

o - a f(A) 2An =0 (A1.3)

where A is a Lagrange multiplier. Differentiating f in (A1.3) one obtains

dct(A(n))D,,k A-' (n)n - An, 0 (A 1.4)

Introducing the notation

J.1 (n) det(A(n))D,k A-' (n) (A 1.5)

the minimum condition (A1.4) can be recast as

J,, (u)n, - An 0 (A 1.6)

The solutions of (A1.6) can be found in two steps:

i) Expressing n in terms of spherical angles, i. e., setting n= (cosocosG, cososing, sine).

the range of variation t0, 27r' x J0, 7r/2] of (0,o) is swept at 5-degree increments to determine a

first approximation P") to the minima.

ii) The locations of the minima are then pinpointed by means of the iterative scheme:

J,, In' ) k I , 1-- 0 (A 1.7)

18
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I ., ,a , : .j . . ,,..,i .;,_V V.. W -. 7.. .I, V: . ' W . , - - - - . I- . Y- . v- '1' • .. ' V I Y i.,

W47.I

Thus, at every iteration an eigenvalue problem is formulated based on the matrix J evaluated

at the previous iteration j&k. The minimum eigenvector of (A1.7) is taken as the new iterate

4,

Once the orientations of the discontinuity planes have been determined, the corresponding

m-vectors are computed as the zero-eigenvectors of the localization matrix A(n).

Two-dimensional case. In the 2D case the localization matrix A(n) is 2 x 2 and one readily

finds that

4 + r (A 1.8det( A(n)) a, n1 + a, n n-2 + acnin +a 3 nn +,4 (A18

,where

a, = Dill, D-.10 - D1112 D,:!,

a, = DI I D1.232 + D 111 D221 2 - D, I1 DI-,11 - D, '2 D.I.11

a,= D 111 D-222 + D. 11 Dz2  + Dj1 i 221 2 - D1100 Dl.l. - D1-__, D2 11 - Di1, D 11  (A 1.9)

a3  D1 l: D2222 - D 211 D2222 - D, 122D2212 - D, 22, D2211

a4  D1, 1 2 D2 -2_ - D2212 D- 222

Setting n1  co.4, r_ sinO in eq. (A1.8) the localization condition becomes

f(x) o,=; + a a - + + a4 -0 (AI.l10)

where one writes x tanO. In general, the polynomial f(x) in (A1.10) is positive everywhere

prior to localization. Thus the onset of localization can be determined by simply examining

the sign of the minima of f(x). These occur at the roots of the cubic polynomial f (x) which

can be computed in close form by means of Cardan's formulae. As long as the minima of f(z)

remain positive localization does not develop. The onset of localization is signaled by one of
more minima of f(x) crossing the x-axis.
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Figure Captions

Figure 1 Close up view of the central portion of the shear band shown in Fig. 6.

Figure 2 Single element test problem.

Figure 3 Force-displacement curves computed from an isoparametric element, a B method and

the enhanced element.

Figure 4 Evolution of shear strains in test problem of Fig. 2. The results correspond to (a) B

method and (b) enhanced element.

Figure 5 Unit cell for a periodic distribution of voids subjected to an overall shear deformation.

Figure 6 Deformed mesh for the prblem defined in Fig.5 at a prescribed shear strain - 0.0016.

Magnification factor for displacements = 50.

Figure 7 Distribution of bifurcated elements corresponding to the deformation shown in Fig. 6.

The arrows represent the characteristic directions associated with the localized modes.

Figure 8 Distribution of effective plastic strain across the shear band at two stages of deforma-

tion. The values displayed are computed at the element centroids.

Figure 9 Plane strain punch problem on a tapered specimen. Deformed mesh for u 0.4.

Figure 10 Contours of maximum shear strain for punch problem shown in Fig. 9 at v= 0.4.

Resi t ts computed from (a) 1 method and (b) enhanced element.

Figure 11 Plane strain soil specimen compressed between two rigid platens.

Figure 12 Load-displacement curve for problem shown in Fig. I1. Results computed from (a)

isoparametric element and (b) enhanced element.

Figure 13 Deformed mesh computed from (a) isoparametric element and (b) enhanced element.

The results correspond to points A and B on the load-displacement diagram, Fig. 12.

Magnification factor for displacements = 25.

Figure 14 Contours of effective plastic strain computed from (a) isoparametric element and (b)

enhanced element.
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